
 
Abstract- This paper presents the development of a signal 
averaging algorithm for recovering excitation responses 
contaminated by overwhelming amount of various types 
of interference in skin admittance measurements. The 
algorithm is designed to eliminate Gaussian-distributed 
noise by use of a recursive approach. The process of 
recovering low magnitude voltage responses from highly 
noise-contaminated waveforms is a CPU-intensive task. In 
real -time measurements, iterative reconstruction 
algorithm is inefficient and time consuming when slow 
varying input waveforms are present. To increase the 
quality of the reconstruction a considerably large number 
of recursions is required. Increasing the number of 
recursions is appropriate for batch processing of 
measurement data. However, the algorithm considers 
measurements in real-time, whereas required quality of 
signal reconstruction should be kept independent from 
the number of recursions. 

 
I. INTRODUCTION 
 
For medical measurement systems choosing appropriate filter 
specifications is not always a straightforward process. The 
difficulty generally arises from insufficient knowledge of the 
unknown signal power spectrum and the noise power 
spectrum. The major difficulty arises when noise signal is 
randomly occurring with a wide frequency range that 
overwhelms the frequency range of the measured signal. In 
this case the type of filter implementation is a dominant part 
of the overall system design. Signal averaging provides 
excellent results for noise removal, when the signal is 
corrupted by additive white Gaussian noise. Recently, there 
have been many attempts to improve the denoising 
performance at small sample sizes by using statistical 
inference methods based on wavelet statistical models and 
Bayesian estimation [11,12]. The proposed algorithm is 
rather different and will efficiently increase the S/N ratio by 
averaging out the unwanted signal, even with very low level 
of input signal amplitudes. 
 
II. M EASUREMENT SETUP 
 
Measurements were performed by simultaneous recording of 
dry skin parameters. The skin parameters of interest, as 
described in [2], are D.C potential, A.C conductance, 
capacitance, and the changes in these caused by the reflex. 
A.C measurements were performed by applying low 
amplitude sinusoidal in the frequency range of 0.1-1000 Hz.  
The measurement circuit is based on three-electrode system 
[7] with constant current, which were designed to record 
simultaneous individual measurement of electrodes. The 

measurement responses at different frequencies were A/D 
converted and recorded for denoising process by use of the 
averaging algorithm.  
 
III. M ETHOD 
 
Signal averaging is often done by a dedicated computer after 
A/D conversion. However, averaging requires that a large 
number of bits per unit time be processed. This, in turn, 
requires a fast A/D conversion and CPU -intensive digital data 
processing. The measurement system was simulated with 
several different system configurations, and several optimum 
results were achieved. By repetitive additions of waveforms, 
random noise samples tend to average to zero while the 
amplitude of the desired signal increased with decreasing 
system bandwidth and performance. It is assumed that the 
random noise signal must not be correlated with the desired 
signal. Overlapping frequency components are not cut off, on 
the contrary, they are manipulated equally, i.e., increased in 
amplitude along with the input signal.  
 
In order to eliminate the random noise samples efficiently, it 
was necessary to increase the number of additions. This 
reduces the system bandwidth unduly and causes unstable 
conditions. To overcome such situations, additional 
operations have been applied in parallel with the averaging 
process. Fig. 1 illustrates an extreme situation, where a 256-
samples waveform with a S/N ratio of 1/100 is given as the 
input.  

Noisy Input, S/N=1/100,Samples=256
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Fig. 1 Noise corrupted waveform with 256 samples and S/N ratio of 1/100. 
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The output waveform after averaging process is shown in Fig. 
2, which shows that the averaging has its superficial result, in 
which extreme spikes of random noise have vanished 
satisfactorily only after 50.000 recursions.  

Recursions=50000, Samples=256
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Fig. 2 Averaged waveform of the noise corrupted waveform with 256 
samples. The corrupted waveform is nearly reconstructed after 50.000 
iterations. 
 
IV. APPROACH 
 
Let T denote the time for each waveform, and if M 
waveforms of the noise-contaminated signal, each of duration 
T will be averaged, N samples from each waveform must be 
taken and stored, giving NM ×  samples in total, then a 
synchronized addition of the samples can be performed to 
produce the average value of the M waveforms. The addition 
of the samples can be exactly sychronised if the ith sample of 
the first waveform )( 1w  is taken at time 0t , the ith sample of 

the second waveform )( 2w  taken at time Tt +0 , and the ith 

sample of the Nth waveform )( nw  taken at time NTt +0 . 

As shown in the following Mathematica code slice, each 
waveform )( iw  is an observed sample denoting a waveform 
of a periodic signal containing N discrete random noise and 
measured signal samples.  
 
NoiseSamp/: NoiseSamp[magn_]:= magn*Random[Real,{-1,1}] 
InpSamp/: InpSamp[sampno_Integer,n 
   magn_,samps_Integer,freq_:1,Phase_:0] :=  
   N[Sin[2 Pi(sampno*freq+Phase)/samps],7]+NoiseSamp[nmagn]] 
 
This function is a symmetrical implementation of a waveform 
of which the half period is calculated by, 
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Where, )( is  denotes the signal sample, )(in the noise sample 

of a random magnitude, and wv
denotes sum of these 

quantities. 
 
Corresponding samples from each waveform are then 

averaged to give the average value kw  at the kth sample 

position of M waveforms 
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where ),( rnw represents the nth sample of the rth  waveform. In 

the simplest manner, the average value is calculated by 

adding the waveforms Mww ,,1 K  in a sample-by-sample 
manner, and then dividing the sum by the number of 
waveforms:  
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where 
 

• ),( rnw = nth sample of the rth  waveform, 

• ),( MNy
v

= Average value of M waveforms containing 

N samples each. 
 
The algorithm was first implemented and tested by using the 
following Mathematica code slice: 
 
Avr/: Avr[samples_Integer,recursions_Integer,  
NoiseLvl_,Frq_:1,Phase_:0] := 
Block[{n = 0,r = 0, myi, iterator = 0,i, S, 
 FilteredWave, Signalin}, Array[W,samples]; 
 InPut=Table[InpSamp[i,NoiseLvl,samples,Frq,Phase], 
                                     {i,0,samples -1 }]; 
 Signalin = Table[InpSamp[i,0,samples,Frq,Phase], {i,0,samples - 1}]; 
 For [r=1, r <= recursions, r++, For [n=0, n < samples, n++, 

W[n]=W[n]+(InpSamp[n,NoiseLvl,samples,Frq,Phase]  - W[n])/r]; 
    iterator++; 
    If[Mod[iterator,10] == 0, 
       S=Table[W[myi], {myi,0, samples - 1}]; 
    ] ]; 
 FilteredWave=Table[W[myi], {myi,0, samples - 1}]; 
 Return [FilteredWave] ] 
 
The NM ×  noisy samples are grouped into random 
samples  to create a random space of M observable 
waveforms defined as  
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or arranging the waveforms into N random observable 
columns 
 





















=





















=

),(

),2(

),1(

)1,(

)1,2(

)1,1(

1 ,,

NM

N

N

N

M x

x

x

S

x

x

x

S
M

L
M

   (4) 

 
Thus, the average value of the random observable columns 
can be determined as  
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It is obvious that the mean values NSS ,,1 L  construct the 

sample mean of the M waveforms, MWW ,,1 L i.e., 
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A rather intuitive alternative of determining the sample mean 
W  may be acquired by taking average of each waveform as  
a whole, and measuring the mean value of the averaged 
waveforms. Thus, for the M waveforms 
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will yield the average value, and the consequent averages for 
each waveform with n samples each, i.e., 
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Recursive additions of M waveforms with N discrete samples 
will yield 
 

∑
=

−=
M

r
rr W

M
W

1
1

1
 

∑
=

=
M

n
rnW

N
W

1
),(

1
  Nn ,,1 L=   (9) 

( )∑
=

−+ +=
M

r
rnrnr WW

M
W

2
)1,(),(1

1
 

( )∑
=

++=
M

r
Mnn xx

M
W

1
),()1,(

1
L  

∑
=

=
M

r
rnx

M
W

1
),(

1
  Nn ,,1 L=  

).,( MNyW =          (10) 

 
 
V. CONCLUSIONS 
 
Sample-by-sample addition of two discrete-time signals 
derived as 
 

),(2),(1),( rnrnrn XXY +=      (11) 

where 

• =),( rnY Sum output of the nth sample at the rth 

recursion,  
• =),( rniX  nth input sample of the discrete-time 

signal [ ]nw  at the rth recursion. 
 
Generally, for M recursions the output sum is written as 
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However, repetitive additions of discrete-time samples have 
produced undesired output levels, which might be difficult to 
manipulate by electronic circuits.  Increased number of 
recursions can cause noticeable degradation in system 
dynamics. We have therefore introduced an appropriate 
expression in order to keep the output under control. When 
the interference was high and thousands of iterations were 
required the control mechanism operated well. Therefore, this 
algorithm applies equally well to both batch processing and 
real-time measurements. 

Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 



 
Keeping this in mind, reasonable output levels were acquired 
by modifying Equation 12. If, after each addition, the output 
were scaled down by a certain factor, increasing repetitions 
would not cause any growth in the output level. The equation 
was therefore modified to provide stable characteristics, 
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where ),( rnX  is substituted for the input term ),(1 rnw and,  

)1,( −rnY is substituted for the input term, ),(2 rnw which is the 

sum of the repetitions prior to the r-1th recursion. This 
equation was applied in the system simulation, which 
provided efficient system dynamics.  Fig. 3 shows the result 
of a real-time measurement; the noisy input, and the averaged 
output after a 2000 recursions of averaging process.  
 

 
Fig. 3 Photo of a real-time measurement. Only noisy input and the averaged 
output are shown. 
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